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Hybrid Analysis of Three-Dimensional MMIC
Elements by the Method

Larissa Vietzorreck, Member, IEEE, and Reinhold Pregla,

Abstract—A new eigenmode algorithm, based on the method of
lines, is presented for full-wave analysis of real three-dimensional
(3-D) MMIC elements. Finite conductor thickness, finite sub-
strate, dielectric or ohmic losses are rigorously modeled. The
analytical calculation in the direction of propagation enables the
analysis of structures with very short or long interconnections
between the single discontinuities. To demonstrate the generality
of the proposed algorithm several completely different structures
were analyzed. Examinations of the convergence were performed.
Scattering parameters of filters and planar transmission line
interconnects like air bridges, via holes and bead transitions were
investigated. The calculated results agree very well with computed
and measured results published in literature.

I. INTRODUCTION

I N THE DESIGN of planar integrated circuits discontinu-
ities of metallization and substrate occur at several parts of

the devices, causing reflections and disturbing the propagation.
In designing filter elements these effects are used to achieve
a certain behavior of the circuit, others are caused by the
construction itself and should be avoided as much as possible,
like in transitions of different types of transmission lines. In
packed structures the transmission lines in different layers can
be connected by via holes, a connection to a chip can be done

by air bridges or bondwires and, if single components of the
circuits are encapsulated, special forms of transitions through

a wall are needed. All these transitions are three-dimensional
(3-D), even though the connected circuits are planar. The
intended electrical performance of the microwave device may
be severely deteriorated, if the design of the described elements
is made improperly. Hence an accurate analysis of a wide class
of complex 3-D elements encountered in practice is necessary.

Some of these interconnecting structures or filter elements
have been investigated by various methods, e.g., FD [1], [2],
FEM [3], FDTD [4], TLM [5], or SDA [6]. In these methods
problems may occur in the modeling of a finite substrate, a
finite conductor thickness or in the analysis of very short or

long interconnections. Additionally, in some methods artificial
boundaries have to be provided at the input and output.

It has been shown in numerous papers, that the method of
lines (MoL) is highly suitable for analysis of planar transmis-
sion lines [7]. In the design of microwave circuits, however,
the MoL has been applied mostly to planar structures with few
discontinuities, using a two-dimensional (2-D) discretization
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Fig. 1. Top view of an example.

perpendicular to the propagation direction [8], [9]. As a

consequence of this form of discretization the size of the
calculation window increases very much for longitudinally
inhomogeneous structures and special boundary conditions for
the boundaries in propagation direction have to be established.

Another approach is the division of a structure in cascaded
subsections with respect to the propagation direction. This pro-
cedure has been successfully applied to dielectric waveguide
structures in integrated optics [10] and to homogeneously filled
waveguides [11]. In the analysis of the optical structures,
however, not all reflections were considered.

Recently, single planar microstrip discontinuities have been

studied by the MoL using discretization lines in propagation

direction [12]. In this paper this new approach is substantially
extended for the analysis of cascaded discontinuities with
3-D metallizations. The difficulties relevant to the above
mentioned methods are eliminated. Finite as well as zero
conductor thickness, finite substrate, dielectric or ohmic losses
are rigorously. modeled by a 2-D discretization of the cross
section. The analytical calculation in the direction of propa-
gation enables the analysis of structures with very short or
long interconnections between the single discontinuities. In
the analysis all eigenmodes are considered. High accuracy of

the calculation is achieved by matching the field components
instead of the modes.

II. THEORY

In contrast to the conventional MoL the examined structure
is not divided into layers but into a series of sections with

a longitudinally homogeneous distribution of dielectric media
and metallization (see Fig. 1).

The finite conductor thickness and the finite andlor inho-
mogeneous substrate are modeled by a 2-D distribution of the
permittivity and the metallization within the cross section (see
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Fig. 2. Cross section of an example.
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Fig. 3. Discretization scheme.

Fig. 2). Dielectric and ohmic losses can be considered using

complex permittivities.

A. Calculation of the Eigenvalues

In each longitudinally homogeneous section the electromag-
netic field is derived from a vector potential II It is important
that the potential has the same vector components as the
gradient of the permittivity of the material s..

Only this general solution leads to a consistent system of
coupled differential equations of the Sturm-Liouville type for

the potential components ~z and @y. The coordinates are
normalized according to z = kox, Y = key, 2 = koz.

(2)

(3)

The cross section of each section is now subjected to a 2-
D discretization, the solution in propagation direction being
analytical. We use four different line systems for the potentials
& and ~v and their derivatives which are shifted toward each
other. The 2-D difference operators constructed by Kronecker
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Fig. 4. Discretization points on the metallization,
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Fig. 5. Position of the coordinate origin.

products from the one-dimensional ones are described in detail
in [10]. In the further analysis they are denoted by a hat ( “ ).

In case of a perfectly conducting metallization the com-

ponents have to fulfill the different boundary conditions for

a metallic wall. These boundary conditions can easily be
incorporated into the difference operators. An example for
the modification of the difference operator is given by the
derivative in z-direction of the component +Y, fulfilling the
Dirichlet boundary condition +V= O at the metallization
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A generalization of the reduction procedure can be estab-
lished by introducing so-called structure matrices for each line
system. The structure matrix S for the line system of +Z is
derived from an identity matrix of the size iVZz. Nzg, in which
the columns corresponding to the position of the lines within
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the metallization are deleted

s=

‘.

1

0

[

1
“.

The reduced difference operators and matrices containing

the discretized values of the permittivity are now easily derived
from the undisturbed case by a multiplication with the different

structure matrices.

.’r
DYY = S:.DYY.SA ~: = s:.~.s.

.r

D= s~.Dyz.sA e: = S;.to.so (6)~#x
D~ ~z = S;.DZ..S. E: = S:.t..s.
DZY = Sk.Dzy.s.

Transforming the discretized wave equation to principal
axes gives a system of uncoupled differential equations

-gimi=o (7)

with

fi=?fi f-~QT = pz (8)

where the vector fi contains the discretized and reduced
potential components of q$z and 4V. A detailed description
of the components of the coupling matrix Q can be found in
Appendix A.

The solution for the transformed potential

or

yields

(9)

fi(~) = cosh (f%’)A + sinh (&)B (lo)

with the position of the different coordinate origins in 2, Z’
given in Fig. 5. In the outer sections the first formulation is
chosen. A and B denote the amplitudes of the forward and
backward going waves and ~ is a diagonal matrix, containing
the normalized propagation constants in z direction, including
evanescent and complex modes. For the inner sections the

second formulation is numerically favorable.

B. Matching Procedure

Matching the tangential field components at one interface
establishes a relation between the amplitudes A and B in both
sections. The resulting scattering matrix for one discontinuity
can be carried out as described in [12]. For structures with
several discontinuities, when (10) is used to describe the trans-
formed potential in the inner sections, we use the following
formulation for the fields in the matching plane

“=pe[coshR) A+sinhH-7Bl

‘pebanh(4B1
“=ph[sinh(wA+cOshP:)Bl
‘PehanhP:)*+B1 (11)

with

()A=cosh r; A

()
B=cosh ~; B (12)

[1E
Et = E“ = pefi; Ht = [1mY = ~hfi (13)

Y –jHz

The different signs in (11) are valid for matching at the left
and right boundary of the section. The difference operators p,

and ph are described in Appendix B. A different number of
lines in neighboring sections caused by a different distribution
of the metallizations requires a partitioning of the matrices

into two submatrices

(14)

P: and P: correspond to the common discretization lines of
the two sections. They have the same number of rows, whereas

P: and P; denote the lines ending on the metallization of the
other region. The matching procedure at the interface of two
inner Sections I and II now yields

with

(16)

Now we combine the scattering matrices for the single
discontinuities successively and obtain the generalized scat-
tering matrix of the whole structure under study. For a given
input—one or several of the propagating modes—the unknown
amplitudes of the transmitted and reflected waves are com-
puted.

111. RESULTS

A. Investigation of Convergence

In order to determine the influence of the discretization, a

simple stub filter (see Fig. 6) was analyzed as a test structure
using three different numbers of dkcretization lines on the
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Fig. 6. Stub filter geometry WI = 2.38 mm, wz = 2.38 mm, Wb = 20
mm, h~u~ = 0.79 mm, E, = 2.35.
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Fig. 7. Scattering parameters ISI I \ and IS2I I for different line numbers of
I+c on the stripline WI.
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Fig. 8. Convergence of amplitude and phase of S1 I for ~ = 10 GHz,

infinitely thin microstrip line. The scattering parameters are

plotted in Fig. 7.

For an increasing number of lines the results shift toward

the measured values [8]. In order to proof that a good accuracy

has been achieved the convergence of amplitude and phase of

thereflection coefficient is shown for the frequency ~ = 10
GHz. In Fig. 8thesevalues areplotted overthe inverse number

of lines n for the potential +Z on the strip WI. The result for
l/rz -+ O is then obtained by an extrapolation.

To show the advantage of the reduction algorithm for a
perfectly conducting metallization, the same analysis was per-
formed by modeling the metallization as a dielectric medium
with extremely high imaginary part of the dielectric constant.
The results for the propagation constants and the scattering pa-
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Fig. 9. Computing time for one frequency point versus number of +Z lines
in the cross section.

Fig. 10. Geometry of a hermetic bead transition [4] wo = 0.55 mm,

WI = 0.21 rnrn,E,I = s,2 = 10.8, h = 0.635 mm, g = 0.4 mm,
and 1 = 1.5 mm.

rameters are absolutely the same, but the required computation
times differed extremely, which is shown in Fig. 8. The results
are gained using MATLAB on a IBM RISC/6000 workstation.
The explanation is the different treatment of real and complex

tridiagonal matrices in the computation of the eigenvalues by
the used LINPACK routines and the smaller size of the reduced
matrices.

B. Scattering Parameters for Various Structures

To demonstrate the versatility and accuracy of the new

approach, which allows investigation of a great variety of 3-D
structures using the same program, four different examples
of transitions are investigated and compared with results
published in literature.

The first example is a hermetic bead transition (Fig. 10),
frequently encountered in encapsulated circuits to provide
physical protection and electromagnetic shielding. The inter-
connecting coaxial line is approximated by a rectangular 50 Q
stripline as in [4]. The scattering parameters (Fig. 11) are in
very good agreement with the other numerical methods [4].

The second example (Fig. 12) is a via hole, used for

the connection of two 50-Q striplines arranged in a three
layer package [3]. The structure is divided into five regions,
containing several metallizations of finite thickness. Fig. 13 is
a plot of the S-parameters of the transition versus frequency.
In contrast to [3] no artificial boundaries are necessary.

The third structure analyzed with the new algorithm. is the
connection of two microstrip lines by a bondwire (Fig. 14),
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Fig. 11. Scattering parameters of a bead transition (Fig. 10) compared with
FDTD [4] and FEM [4]

Fig. 12. Rectangular via connection of two striplines [3] w = 1.25 mm,
h = 0.25 mm, d = 1.25 mm, a = 0.5 mm, and b = 0.75 mm.
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Fig. 13. S-pamnneters of the via connection (Fig. 12) in comparison with
FEM and FDTD results in [3].

where the horizontal part of the wire is modeled as infinitely
thin metallization [6]. Additionally, the influence of an air gap
and the bondwire thickness on the circuit performance has
been investigated. In Figs. 15 and 16 magnitude and phase of
the computed reflection coefficient are sketched for different
geometries in comparison to the results by the SDA [6],
showing the influence of finite gap width and finite bondwire
thickness. The horizontal bondwire thickness t and the air gap

width gs are used as parameters.

For the more realistic modeling of the bondwire with a

metallization thickness t = a a smaller magnitude of the

reflection coefficient is visible.

The last example is a microstrip resonator filter on a lossy
substrate, shown in Fig. 17. This structure is compared with

Fig. 14. Schematic view of an interconnection by a bondwire w = 0.635
mm, a = 0.211 mm, e, = 9.8, d = 0.635 mm, h = 0.211 mm, and
g~ = 0.635 mm.
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Fig. 15. Magnitude of the reflection coefficient for Fig. 14 in comparison
to [6].
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Fig. 16. Phase of the reflection coefficient (Fig. 14).

an analysis by [2]. A similar strocture on a lossless substrate

was analyzed by [9], using also the method of lines, but with

discretization lines perpendicular to the propagation direction.

The dimension of the calculation window in the former MoL

approach enforced the use of a vector computer, whereas with

the new algorithm more accurate results were gained on a IBM

RISC/6000 workstation using nearly half of the discretization

lines.

For all four components our results are in good agree-

ment with the results obtained by other methods. Even the

phase, which is more sensitive against the influences of the

discretization, is in good consistency with the results of [2]
and [6].
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Fig. 17. Metallic parallel resonator exited by a microstrip line
= W2 = 150pm, s = 75~m, c, = 12.9, tan 6 = 10–2,

~1= 150Urn, t= 30pm, and t = 2.55 mm.
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Fig. 19. Phase of the transmission coefficient,

IV. CONCLUSION

The main features of the proposed MoL approach can be
summarized as follows: An advantage of this procedure is

the analytical calculation in z direction. There is no need
for special boundaries at the input and output. The size of
the discretization window depends only on the cross section.
This fact is extremely favorable for long structures or both
long and short sections. High accuracy of the calculation is
achieved by matching the field components instead of the
modes. The use of different boundary conditions for the cross
section makes the investigation of open and shielded structures
possible. The scattering parameters are calculated directly,
with an analytical distinction between the different modes.
The easy mathematical description and the general formulation

allow the analysis of a great variety of structures with the

same program.

S-parameters for four different 3-D elements have been
computed. A very good consistency with results published in
literature can be stated both for magnitude and phase. The
influence of air gaps and bondwire thickness was investigated,
showing the suitability of the proposed approach for the
analysis of 3-D interconnects.

APPENDIX A

CALCULATION OF THE COUPLING MATRIX

The components of the coupling matrix Q are described as
following:

with

(17)

APPENDIX B

CALCULATION OF THE FIELD COMPONENTS

The field components will be calculated from a potential

II by

rlOH = jV X II; E= E;lVXV XII. (19)

In the discretized form we obtain the tangential fields by

(13) with

(20)

and

The matrices IN are identity mat~ces of the size of the
corresponding reduced line system. For the description of the
fields the self-adjoint formulation is chosen.
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